冲压模具用什么钢材

冲压模具用什么钢材

冲压模具用什么钢材

    冲压模具材料有钢材、硬质合金、钢结硬质合金、锌基合金、低熔点合金、铝青铜、高分子材料等等。
目前制造冲压模具的材料绝大部分以钢材为主,常用的模具工作部件材料的种类有:碳素工具钢、低合金工具钢、高碳 高铬或中铬工具钢、中碳合金钢、高速钢、基体钢以及硬质合金、 钢结硬质合金等等。
1. 碳素工具钢
在模具中应用较多的碳素工具钢为T8A、T10A等,优点为加工性能好,价格便宜。但淬透性和红硬性差,热处理变形大,承载能力较低。
2. 低合金工具钢
低合金工具钢是在碳素工具钢的基础上加入了适量的合金元素。与碳素工具钢相比,减少了淬火变形和开裂倾向,提高了钢的淬透性,耐磨性亦较好。用于制造模具的低合金钢有 CrWMn、9Mn2V、7CrSiMnMoV(代号CH-1)、6CrNiSiMnMoV(代号GD)等。
3. 高碳高铬工具钢
常用的高碳高铬工具钢有Cr12和Cr12MoV、Cr12Mo1V1(代号D2),它们具有较好的淬透性、淬硬性和耐磨性,热处理变形很小,为高耐磨微变形模具钢,承载能力仅次于高速钢。但碳化物偏析严重,必须进行反复镦拔 (轴向镦、径向拔)改锻,以降低碳化物的不均匀性,提高使用性能。
4. 高碳中铬工具钢
用于模具的高碳中铬工具钢有Cr4W2MoV、Cr6WV 、Cr5MoV等,它们的含铬量较低, 共晶碳化物少,碳化物分布均匀,热处理变形小,具有良好的淬透性和尺寸稳定性。与碳化物偏析相对较严重的高碳高铬钢相比,性能有所改善。
5. 高速钢
高速钢具有模具钢中最高的 的 硬度、耐磨性和抗压强度,承载能力很高。模具中常用的有 W18Cr4V(代号8-4-1)和含钨量较少的W6Mo5 Cr4V2(代号6-5-4-2,美国牌号为M2)以及为提高韧性开发的 降碳降钒 高速钢 6W6Mo5 Cr4V(代号6W6或称低碳M2)。高速钢也需要改锻,以改善其碳化物分布。
6. 基体钢
在高速钢的基本成分上添加少量的其它元素,适当增减含碳量,以改善钢的性能。这样的钢种统称基体钢。它们不仅有高速钢的特点,具有一定的耐磨性和硬度,而且抗疲劳强度和韧性均优于高速钢,为高强 韧性冷作模具钢 ,材料成本却比高速钢低。模具中常用的基体钢有 6Cr4W3Mo2VNb(代号65Nb)、7Cr7Mo2V2Si(代号LD)、5Cr4Mo3SiMnVAL(代号012AL)等。
7. 硬质合金和钢结硬质合金
硬质合金的硬度和耐磨性高于其它任何种类的模具钢,但抗弯强度和韧性差。用作模具的硬质合金是 钨钴类 ,对冲击性小而耐磨性要求高的模具,可选用 含钴量较低 的硬质合金。对冲击性大的模具,可选用 含钴量较高 的硬质合金。
钢结硬质合金 是以铁粉加入少量的合金元素粉末(如铬、钼、钨、钒等)做粘合剂,以碳化 钛或碳化钨为硬质相 ,用粉末冶金方法烧结而成。钢结硬质合金 的基体是钢,克服了硬质合金韧性较差、加工困难的缺点,可以切削、焊接、锻造和热处理。 钢结硬质合金含有大量的碳化物,虽然硬度和耐磨性低于硬质合金,但仍高于其它钢种,经淬火、回火后硬度可达 68 ~ 73HRC。

上一条:模具设计与制造的优化技术资料
下一条:无
来源:本站 时间:2017-10-14 14:28:40
浏览更多 冲压模具用什么钢材  的内容
【其它产品】
版权所有 浙江永康宏全模具材料有限公司 技术支持:金华博创Sitemap
  • 主页
  • 线棒工作台
  • 铝材锯片
  • 滚珠丝按
  • 主页 > 滚珠丝按 >

    安体新一代同步整流驱动NCP4305 显著实现更高能效

      发布时间:2018-03-21 15:49

      NCP4305 是高性能的次级同步整流驱动,能有效地控制和驱动用作次级端整流的MOSFET,用于要求高能效的开关电源(SMPS)设计中如笔记本电脑适配器、USB无线适配器、液晶电视和伺服器电源、高电平脉冲电源适配器等高功率密度AC-DC电源。

      同步整流旨在通过用低导通电阻的MOSFET代替常规的肖特基二极管进行整流来减小损耗,提升能效。以5 V应用为例,使用肖特基二极管整流将产生0.3 V的导通压降,而同步MOSFET的导通压降低于0.1 V,从而实现更高能效。

      1. 功能单一,应用场合有限:只适用于某一拓扑而不涵盖大多数拓扑,如只适用于反激(Flyback) 或LLC而不适用于正激(Forward);只适用于某一工作模式而不涵盖大多数模式,如只适用于非连续导通模式(DCM)、准谐振(QR),而不适用于连续导通模式(CCM);

      2. 由于延迟导通和提前关断整流管的时间过长,且导通和关断门限无法编辑,因而无法最大限度提升能效。

      安森美半导体的NCP4305突破上述局限,适用于Flyback、LLC、Forward等大多数主流拓扑,以及QR、DCM、CCM等多种工作模式,提供强大的8 A/4 A汲极/源极驱动能力,更短的导通延迟和提前关断,而且导通和关断门限可调,有效提升系统能效。

      NCP4305是NCP4303/4的升级版,支持高达1 MHz的工作频率,提供大电流门驱动器及高速逻辑电路,用于为同步整流MOSFET提供时序恰当的驱动信号。由于其新颖的架构,能在任何工作模式下使同步整流系统保持高能效。工作电压高达36 V,外部可调节的最小导通和关断时间帮助解决由印制电路板 (PCB) 布线及寄生元件导致的谐振问题,从而提供可靠及无噪声的工作。典型值12 ns的极短关断延迟时间使同步整流MOSFET导电时间延至最长,从而提升SMPS能效。零电流检测(ZCD) 引脚耐压能力高达200 V,允许在Flyback应用中将CS输入直接连至MOSFET漏极。该器件使用开尔文连接法以实现满载时的高能效,采用轻载检测架构以降低轻载时的功耗。NCP4305的特性还包括:门极驱动自适应、精密的真正次级 ZCD、超低瞬态电流(50uA) 、低启动电流和低待机电流等等。该器件的显著优势是能工作于深度CCM状态中,且极大地改善轻载能效。

      NCP4305可采用SOIC-8、DFN8和WDFN8三种封装。MIN_TOFF 和MIN_TON引脚通过连接电阻到地,调节最小关断和最小导通时间。LLD引脚用于在轻载时调节驱动器钳位电平,或关断驱动器。DRV引脚是同步整流MOSFET的驱动器输出。CS(电流采样检测)引脚用于检测电流是否流过同步整流MOSFET。TRIG/DIS引脚提供超快关断输入,用作在CCM应用中关断同步整流MOSFET以提升能效,当上拉超过100 us时激活禁用模式。

      安森美半导体提供A、B、C、Q四个版本的NCP4305,其中A、C版本可用于氮化镓(GaN)的驱动,Q版本具有设置最大导通时间的功能。

      图2为NCP4305的典型应用原理图。在LLC应用中,由于次级端有两个MOSFET,且工作时序不同,所以需要两个NCP4305分别控制。NCP4305主要用于次级端回路(即负端),但也可置于次级输出的正端。当置于正端时,必须额外添加辅助线圈为SR提供电源,并添加一些元件到LLD电路中。

      CS_OFF比较器是非常精密的真正的零比较器,通过同步整流将系统能效提升至最高。NCP4305的CS脚和SR MOSFET(M1) 之间的电阻用来调节关断电流。当CS脚电压低于VTH_CS _ON阈值时,M1 导通;当CS脚电压高于VTH_CS _OFF阈值时,M1关断。

      由于在GND端和CS端之间不仅包括M1的导通电阻,还包括M1 管脚、PCB布线产生的寄生电感,而寄生效应会导致电流信号发生变化,从而导致驱动器在电流降至0前提前关断,能效降低。为减小寄生效应,M1管的封装方式及PCB布线至关重要:GND引脚必须接至M1的源极,CS引脚必须接至M1的漏极,M1管尽量采用SMT封装。

      NCP4305可设置最小导通和最小关断时间,从而屏蔽由于同步整流管导通和关断瞬间导致的噪声。由于寄生效应,同步MOS管导通瞬间会产生电压噪声。最小的导通时间设置将避免比较器错误地关断同步MOS管。同步MOS管关断瞬间会产生电压噪声,且在DCM的退磁阶段产生振荡。最小关断时间能够屏蔽噪声并防止同步MOS管错误地开通。当CS压降低于CSTH_RESET阈值时,最小关断时间有随时重启的特性。这种特性,适合于应用在DCM工作模式。

      NCP4305的TRIG引脚用来控制SR的驱动输出,也可用来与系统同步。只有当TRIG脚电平低于阈值电压且最小关断时间达到以后,SR驱动才会正常工作。在受寄生效应干扰的系统中,该器件启动进行自同步,这自同步特性提供灵活的控制功能。

      在CCM应用中,当初级端MOS管导通时,通过隔离驱动器强制使次级端MOS管关断;当初级端MOS管关断, TRIG脚功能使次级端MOS管导通。这种交替导通特性大大提高系统能效。如图5所示,无触发功能的初级端和次级端驱动信号交叠的时间为40 ns,远大于带触发功能的12 ns,也就是说,触发功能将缩短延迟时间,从而降低损耗。

      QR可代替触发功能。通过添加一些元件增添最大导通时间设置功能,可使QR强制工作在CCM模式。当最大导通时间超过设定值,提前关断SR晶体管(仍有一些电流流过次级端电路)。关断SR晶体管的信息被小信号变压器转移到产生伪ZCD状况的初级端,所以QR可在次级端电流消失前转向初级晶体管,最终进入CCM模式,这使变压器可转换比在DCM模式更多的能量,为QR带来最大峰值功率优势,可大大提升重载时的能效。

      同步整流系统用于SMPS应用时,可大大提升系统在重载或满载时的能效。然而,在轻载或无载条件下,SR MOSFET和SR会产生功耗。NCP4305的自适应驱动器钳位电压特性可使输出电压随负载而变化,从而优化轻载和无载条件下的能效。输出电压可通过LLD引脚从0调至其最大电压。在Flyback应用中,LLD电路用于间接测量输出功率,并据此调节驱动器输出电压或进入禁用模式;在LLC应用中,LLD电路用于测量跳周期模式的占空比,并据此改变驱动器输出电压或进入禁用模式。

      安森美半导体新一代同步整流驱动NCP 4305采用精密的真正零关断比较器,可设置最小的导通和关断时间,其自同步、极短关断延迟时间、强大的驱动能力、自适应门极驱动等特性可将整流损耗降至最低,使其在任何负载条件下都能保持最高能效。该器件可兼容DCM/CCM Flyback、QR Flyback、正激及半桥谐振 LLC等多种拓扑,用于高功率密度AC-DC电源 的SMPS设计中以实现更高能效。